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1. INTRODUCTION

The problem of measuring economic growth has stimulated
research in economics and economic geography for many
decades (Barro, 1991; Gallup, Sachs, & Mellinger, 2009;
Maddison, 1995). The traditional approaches of estimating
growth aim to measure changes in economic activities at
national or global scales. However, the subnational dimen-
sions of change in economic activities are also important, par-
ticularly in order to understand the interactions between local
progresses/failures and those at higher geographical scales. In
fact, development issues operate at intrinsically different spa-
tial and temporal scales. Despite continuous revisions of
knowledge, methodologies, and techniques for measuring
income and economic activity using conventional ground sur-
vey-based data, reliable yearly statistics at the national level
are often a luxury. Many poor countries lack both the
resources and the capacity to acquire such reliable data,
despite decades of international statistical support. The UN
Statistical Commission has supported a standardized system
of national accounts (SNA) since 1953, yet even today many
developing countries do not regularly produce the full SNA
due to capacity and cost constraints. A number of studies have
actually pointed out potentially serious measurement errors in
growth figures, particularly in developing and emerging econ-
omies (Henderson, Storeygard, & Weil, 2012; Johnson,
Larson, Papageorgiou, & Subramanian, 2013; Nordhaus,
2006; Ravallion & Chen, 1999).

Since the early days of satellite remote sensing, its accessibil-
ity, quality, and scope have been continuously improving,
making it a rich data source with a wide range of applications.
Although there are a few examples of remote sensing to be
found in the social sciences, developments have, on the whole,
been less pronounced than in the natural sciences (Hall, 2010).
This has historically been attributed to (a) the need for in-
house remote sensing expertise which is rarely found in social
science departments, (b) the fact that many of the variables of
interest in contemporary social science research are not
directly observable from space, and (c) the very high costs
for data acquisition.

Satellite remote sensing missions are generally designed for
specific applications, often earth sciences related, such as
vegetation classification and weather forecasting. The

Defense-Meteorological Satellite Program-Optical Line Scan-
ner (DMSP-OLS), launched in the early 1970s, was designed
to observe clouds at night for weather forecasting purposes.
However, its sensor was soon found to be very good at
detecting the presence of light at night on Earth (Croft,
1978). The DMSP-OLS sensor is sensitive enough to detect
street lights and even saury fishing vessels at sea (Saitoh et
al., 2010). The lighting detected by the DMSP-OLS is largely
the result of human activities, emitted from settlements,
shipping fleets, gas flaring or fires from swidden agriculture.
Therefore, nighttime light imagery serves as a unique view of
the Earth’s surface which highlights human activities
(Figure 1).

Recent studies conducted by economists have paid more
attention to artificial nighttime light data and efforts have been
made to associate these observations with economic growth in
order to cope with estimation errors (Chen & Nordhaus, 2011;
Doll, Muller, & Morley, 2006; Ebener, Murray, Tandon, &
Elvidge, 2005; Elvidge et al., 1997; Ghosh, Powell, Elvidge,
& Baugh, 2010; Henderson et al., 2012; Sutton & Costanza,
2002). These studies have made attempts to advance research
in two directions: (a) estimation of a consistent and objective
level of economic activities, such as PPP, real GDP, and nom-
inal GDP, and (b) disaggregation of these measures into smal-
ler administrative/non-administrative areas where official
statistics are otherwise lacking or unavailable. While these
existing studies pushed literature forward greatly by showing
potential applications of remote sensing data in economics,
the remote sensing data accumulated since 1970s are tremen-
dous and many more uses remain to be explored. The main
limitations of these existing studies is their overdependence
on nighttime lights and therefore their tendency to underesti-
mate economic activities that emit less or no additional night-
time light as they grow. This is particularly troublesome in
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developing economies which often have a larger share of
agriculture or forestry and therefore weaker linkages with
nighttime lights.

The principle aim of this paper is to explore another poten-
tial remote sensing data source, namely land cover. The rest of
this paper is structured as follows. Section 2 summarizes appli-
cations of remote sensing data in economic analysis thus far,
before discussing some potential improvements. Section 3
reviews the data used in the analysis conducted in this paper,
with a particular focus on remotely sensed land cover data.
Section 4 sets estimation models by extending a framework
developed by Henderson et al. (2012) and discusses the esti-
mated results. Section 5 concludes.

2. REMOTE SENSING DATA AND ECONOMIC
ANALYSIS

Our principle aim is to estimate economic growth using data
observed from space. In this section we consider, in publishing
order, selected studies that use remote sensing data to analyze
economic activities on the ground and examine their method-
ologies, results, advantages, and drawbacks in turn. Croft
(1978) was among the first to point out that nighttime light
reflects human economic activities on the ground. This led
Elvidge et al. (1997) to estimate population, GDP (PPP $),
and electricity usage in lit areas. Through a single year
cross-sectional analysis of 21 countries coefficients of log–
log, or growth rate relationship, between population, GDP,
and electricity and area lit were found to be very high
(0.920, 1.159, and 1.178, respectively). Using area lit instead
of sum of observed light intensity makes Elvidge et al.
(1997) unique from most of the later studies. This study
reveals that a statistically significant relationship between
nighttime light and activities on the ground can be established.
Its biggest drawback, however, lies in its inability to account
for the fact that activities may also spread upward as well as
outward.

Sutton and Costanza (2002) instead use the sum of the
intensity of nighttime light to estimate GDP or, as they term
it, a measure of marketed economic output and land cover
to estimate ESP (Ecosystem Services Product), a type of
non-marketed value. However, as they try to establish coun-
try-specific coefficients between nighttime light and GDP
(PPP $) using single-year data, the relationship is a ratio gen-

erated by simple division. These country-specific coefficients
are then used to produce one square kilometer GDP for each
country. It is obvious that this will produce many sub-national
administrative areas without GDP, as there are many areas
without observed nighttime lights. Nevertheless, the introduc-
tion of ESP to account for economic activities that may not be
captured by nighttime lights is highly suggestive. Using coeffi-
cients determined at the country-level on finer sub-national
administrative areas is, as stated by the authors, an improve-
ment to the general body of research on the subject.

Doll et al. (2006) estimate the relationship between the sum
of nighttime light and the available Gross Regional Product
(GRP) of 11 countries in the EU and states in USA. The elas-
ticity of GRP on the sum of nighttime light is estimated to be
between 0.049 and 0.210 in these regions, excluding outliers.
Outliers are generally capitals or large cities that have different
or higher elasticity when compared to the remaining domestic
regions. The elasticity of these outliers is determined sepa-
rately from the rest of the regions within each country. Only
the Netherlands and Greece are found to have one consistent
elasticity applicable nationwide. This shows that elasticity of
nighttime light and GRP varies in most countries. For this rea-
son, it is important to be cautious when using nighttime lights
to directly estimate the level of GRP of a sub-national region
without official data.

Ghosh et al. (2010) divide economic activities into com-
merce/industry and agriculture. They assume that agriculture
does not emit observable nighttime light. They try to over-
come the limitation of single-year cross-sectional data by
grouping together countries and sub-national administrative
areas by ratios of the sum of nighttime lights and value-added.
Cross-sectional regression is used to determine specific coeffi-
cients for each group. Non-lit area is accounted for by grid
population data from Landscan. 1 The population grid is used
to assign agricultural output to sub-national geographic areas.
Apart from limitations coming from a single-year analysis,
this study is also limited because assigning agricultural
value-added according to a population grid at a one square
kilometer scale is not likely to adequately reflect the reality.
In most societies besides subsistent societies, a small number
of people work in agriculture to produce food not only for
themselves but also for the population of other towns and
cities.

Single-year analysis is common among the studies discussed
so far. In addition to the high cost to acquire processed data in

Figure 1. A global view of nighttime lights year 2012 from the DMSP (Defense Meteorological Satellite Program).
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the past, the fact that nighttime light data should not be
compared between different years is likely to be the main
obstacle to a time-series analysis. This is not to say that night-
time light data must not be compared over time. Levels of
night-time light between 0 and 63 depend on sensor settings
that vary over time, across satellites and due to the age of
the satellite (Henderson et al., 2012). Henderson et al. (2012)
deal with this limitation by introducing time-variant effects
in panel analysis. Moreover, panel analysis makes it possible
to take into account differences among countries. Multi-year
analysis in particular allows one to limit analysis on growth
without having to deal explicitly with scale invariability. We
extend the statistical framework of Henderson et al. (2012)
to account for agriculture, which we demonstrate emits less
or no observable nighttime light as it grows. We also make

use of many direct and indirect suggestions offered in these
existing studies (Table 1).

(a) How nighttime light reveals less about agriculture and
forestry

With a few exceptions, nighttime lights have been the prime
remote sensing data used in economic analysis. Henderson
et al. (2012) show that growth of nighttime lights can be used
to estimate growth across administrative boundaries and
national borders. However, it cannot be assumed that all types
of economic activities emit more nighttime lights as they grow.
While this assumption may hold for industry and services,
where concentration or clustering of activities in certain places
is possible, it holds less strength in agriculture and forestry.

Table 1. Selected literature on GDP and nighttime light relationships

Authors DV EV Spatiotemporal Scope

Elvidge et al. (1997) Population, GDP PPP, GWH Area Lit 1994 or 1995
21 countries

Sutton and Costanza (2002) GDP PPP, ESP Night-time Light Sum, Land Cover 1995, World
Doll et al. (2006) GRP Night-time Light Sum 2003, 11 EU members and states in USA
Ghosh et al. (2010) GDP PPP Night-time Light Sum, Agricultural Share 2005 or 2006 World
Henderson et al. (2012) GDP Night-time Light Sum 1992–2009 World

DV: dependent variable, EV: explanatory variable.

Figure 2. The causal relationship between agriculture and nighttime light. Cross-tabulation between nighttime lights and four land cover classes (Urban,
Cropland, Rice field and Vegetation mosaic.
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Figure 3. DMSP-OLS night-time light and MODIS land cover for three different countries with a high dependence on agriculture for the year 2001 and 2009.
Nighttime light for Burundi 2001 and 2009. (a and b) and MODIS land cover for matching year (c and d). Lao People’s Democratic Republic (e–h).

Cambodia (i–l).

Figure 4. Changes in night-light intensity 1992–2009 for South East Asia. Note the expansion in and around the Hong Kong, Guangzhou and Macau area in
the top-right of the figures. The area north-east of Bangkok is a good example of how powerful infrastructure development is depicted in DMSP-OLS data.

Also, note the coast bound development of Malaysia’s west coast.
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Productivity of agriculture is generally measured by output
per area. In this section, we show from nighttime light and
land cover data that growth of agriculture cannot be satisfac-
torily explained by growth of nighttime light.

Looking directly at the causal relationship between agricul-
ture and nighttime lights can be a good way to support this
claim. One way to do this is by examining land cover and
nighttime lights to see whether or not places categorized as
agricultural land emit light at night. We map nighttime light
with land cover data on a cell-by-cell basis. The results seen
in Figure 2 show the relationship between major agricultural
land types and nighttime light.

As one might expect, nighttime light is mostly observed in
areas categorized as urban. The number of urban areas that
do not emit nighttime light is merely 0.07%. On the contrary,
cells categorized as cropland, paddy field, and other vegetation
mosaic emit no or marginal levels of nighttime light. The num-
ber of lit grid cells in areas with agriculture related land cover
decreases sharply for higher levels of nighttime light intensity.
For levels of observed nighttime lights greater than 5, the per-
centage of lit grids becomes 1%, 4%, and 6% for vegetation
mosaic, cropland, and paddy field respectively. These figures
become 0.3%, 0.7%, and 1.3% for grids with nighttime lights
greater than 10. We cannot conclude that agriculture does
not emit observable nighttime light at all but, based on our
analysis, there are signs telling us that, geographically, agricul-
tural activities are conducted in areas that emit marginal or no
nighttime light.

In addition to the inference problem in using nighttime
lights to estimate agriculture and forestry, there also exists
one rational reason to look beyond nighttime lights.
Henderson et al. (2012) cite the limitations arising from
administrative/national boundaries as one of the important
reasons to use nighttime lights. In other words, socio-eco-
nomic data are usually made available by authorities of

different administrative areas with varied capacities. Nighttime
light observed objectively from space can be used as a proxy
for socio-economic data. However, it is obvious that a critical
quality of such a proxy is ubiquitousness. In other words, ide-
ally, it must be able to be observed from almost anywhere on
Earth. Figure 4 depicts well how land cover becomes a better
proxy if one is to use remote sensing data to estimate subna-
tional growth in developing countries. We know that there
are economic activities, mostly agriculture and forestry in
Burundi, Lao PDR and Cambodia, but nighttime lights are
mostly only observed in the capital cities of these countries
(Figure 3a,b,e,i,j). We argue that while nighttime light is a
good start, one needs to look beyond it in order to
develop potential applications of remote sensing data in socio-
economic analysis.

3. DATA

In this section we describe our two datasets: DMSP-OLS
nighttime lights and MODIS land cover, MCD12Q1 in partic-
ular.

(a) DMSP nighttime lights

The United States Air Force has operated their Defense
Meteorological Satellite Program (DMSP) for more than
40-years. The program is based on a series of orbiting satellites
whose primary function is to monitor weather. The daytime
records of the sensor are exclusively sunlight reflected from
clouds or the Earth’s surface and thus, of limited use outside
of weather forecasting. When the Earth’s surface is at night,
however, the electromagnetic energy sensed by the system is
mostly a product of human light emitting activities (Figure 1).
Croft (1978) was, to the best of our knowledge, the first
to acknowledge that nighttime light data could be used to
measure economic activity. The DMSP Operational Line Scan
(OLS) sensors operate at an altitude of 830 km with a sun syn-
chronous near polar orbit and a revisiting time of 101 min.
The OLS is an oscillating scan radiometer which generates
images with a swath width of approximately 3,000 km. With
fourteen orbits per day, each OLS is capable of generating glo-
bal daytime and nighttime coverage of the earth every 24 h.

Images are processed at the National Oceanic and Atmo-
spheric Administration’s (NOAA) National Geophysical Data
Center (NGDC). Processing removes pixels for observations
of the moon lit half of the lunar cycle, locations where the
sun sets late in the summer (e.g., the Scandinavian countries),

Table 2. Nighttime light data for selected countries 1992–2009 average

Cambodia Lao PDRa Vietnam Burundi Myanmar Mongolia

DN0 98.92% 98.53% 74.60% 98.63% 98.39% 99.69%
DN1-2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DN3-5 0.37% 0.61% 11.35% 0.38% 0.59% 0.18%
DN6-10 0.40% 0.56% 9.10% 0.57% 0.66% 0.08%
DN11-20 0.16% 0.18% 2.85% 0.19% 0.23% 0.03%
DN21-62 0.15% 0.13% 2.02% 0.22% 0.13% 0.03%
DN63 0.00% 0.00% 0.08% 0.00% 0.00% 0.00%
Gini(DN) 0.994 0.991 0.848 0.992 0.990 0.998
Pop. density 78.97 26.60 274.53 335.84 78.33 1.69
Percent urban 19.56 30.83 29.15 10.14 31.00 65.54
GDP per capita, PPP 2005 ($) 1882.09 2002.11 2610.56 473.92 – 3608.60
GDP per capita, 2000 ($) 587.99 561.52 775.76 150.28 – 1249.14

a Lao People’s Democratic Republic.

Table 3. Elasticity of nighttime light on GDP by agricultural share

Agricultural share Elasticity Degree of freedom

Less than 10% 0.67453(***) 1324
From 10% to 20% 0.392780(***) 652
From 20% to 30% !0.408595(***) 377
From 30% to 40% !0.50387955(**) 272
From 40% to 50% 0.02351645 132
More than 50% 0.03823986 68

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
Notes: All specifications include country- and year-fixed effects.
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places with auroral activity (high latitude regions), and areas
covered with clouds. The remaining observations for each
operating satellite sensor are averaged to produce an annual
dataset. The operational temporal resolution is then one year.
Images from the system have been openly available since 1973
but were periodically overwritten to free storage capacity.
Data are digitally archived and available only since 1992.
The processed data are distributed to the public through
NOAA or NGDC Internet portals.

The intensity of lights is coded in a grid format as six-bit
digital numbers (DN). The range is between 0 (no light) and
63. A very small number of pixels are censored 63, according

to Henderson et al. (2012), see Table 2. The spatial resolution
is 30 arc-sec or 0.86 square kilometers at the Equator. Our
area of investigation is between 65 degrees south and 75
degrees north latitude. The exclusion of high latitude zones
affects a very small number of inhabited locations and is nec-
essary due to auroral activity and the fact that the sun sets
later than over-pass time. In essence, we have followed the
setup of Henderson et al. (2012). The average number of valid
nights of data for each satellite year is 39.2 and datasets cur-
rently exist for 30 satellite years.

In 1994, NGDC began producing annual global cloud-free
composites of nighttime lights (Elvidge et al., 1997). These

Table 4. Estimated results for non-agriculture on national level

Estimate Std. error t-value Pr(>|t|)

Log(light/area) 0.27017(***) 0.01186 22.77145 5.86E-105
Factor(year)1993 !0.04306(**) 0.01553 !2.77273 5.60E-03
Factor(year)1994 !0.01984 0.01544 !1.28477 1.99E-01
Factor(year)1995 !0.04798(**) 0.01583 !3.03062 2.46E-03
Factor(year)1996 !0.01336 0.01589 !0.84086 4.01E-01
Factor(year)1997 0.09536(***) 0.01531 6.22743 5.50E-10
Factor(year)1998 0.09244(***) 0.01559 5.92842 3.46E-09
Factor(year)1999 0.11988(***) 0.01565 7.66104 2.57E-14
Factor(year)2000 0.07957(***) 0.01661 4.79105 1.75E-06
Factor(year)2001 0.16760(***) 0.01576 10.63241 6.97E-26
Factor(year)2002 0.13892(***) 0.01673 8.30320 1.60E-16
Factor(year)2003 0.26638(***) 0.01544 17.24853 2.93E-63
Factor(year)2004 0.31940(***) 0.01560 20.46861 1.49E-86
Factor(year)2005 0.34499(***) 0.01593 21.65791 6.89E-96
Factor(year)2006 0.39151(***) 0.01637 23.92323 1.17E-114
Factor(year)2007 0.41664(***) 0.01713 24.31711 4.81E-118
Factor(year)2008 0.46222(***) 0.01713 26.98443 7.31E-142
Factor(year)2009 0.47414(***) 0.01684 28.15954 8.37E-153

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
Total sum of squares: 172.76.
Residual sum of squares: 45.998.
R-Squared: 0.73374.
Adj. R-Squared: 0.68453.
F-statistic: 404.631 on 18 and 2643 DF, p-value: <2.22e-16.
Notes: All specifications include country- and year-fixed effects.

Table 5. Estimated results for agriculture on national level

GDPA (1) GDPA (2) GDPA (3) GDPA (4) GDPA (5) GDPA (6) GDPA (7) GDPA (8)

Nighttime light 0.028
(0.019)

Forest (L1–L5) !0.046**

(0.017)
!0.045**

(0.016)
Grassland (L10) !0.010

(0.015)
Cropland (L12) 0.044*

(0.019)
Cropland/natural vegetation mosaic (L14) 0.020

(0.021)
L12 + L14 0.140***

(0.032)
L10 + L12 + L14 0.173***

(0.042)
0.173***

(0.042)
Observation 1047 1048 1048 1048 1048 1048 1048 1048

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
Standard errors are in the brackets.
Notes: All specifications include country- and year-fixed effects.
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products have been used for a multitude of applications
including, for example, spatial modeling of population density
and economic activity, quantification and comparison of
global urban land uses, discrimination of urban and rural pop-
ulation distributions, estimation of infrastructure density, and
assessment of losses of agricultural land. The OLS detects
radiances down to the 5E!10 W cm!2sr!1 range which makes
it possible to detect artificial sky brightness and most types of
bulbs used for external lightning (Elvidge, 2007). In Figure 4
we provide an example from South East Asia that illustrates
the spread and intensification of nighttime lights for the period
during 1992–2009. The usefulness of DMSP-OLS data is evi-
dent, as it clearly reveals urban sprawl, infrastructure develop-
ment and general economic expansion.

The shortcomings reported for the technical equipment are
coarse spatial resolution, lack of on-board calibration, lack
of systematic in-flight gain changes, limited dynamic range,
six-bit quantification, and signal saturation in urban centers
(Elvidge, 2007).

(b) MODIS land cover data

Over the past several years, researchers have increasingly
turned to remotely sensed data to improve the accuracy of
datasets that describe the geographic distribution of land
cover at regional and global scales. Land cover is the physical
material at the surface of the Earth. Land use is a description
of how people utilize the land. There are two primary methods
for capturing information on land cover: field surveys and
analysis of remotely sensed imagery. For global analysis

remote sensing is evidently the only feasible way to proceed.
Land cover can be determined based on the physically derived
spectral and spatial properties of, for example, maize, asphalt,
and water. Land uses are more difficult to determine as they
are established based on the human use of land. As an exam-
ple, while land cover may be identified remotely as “asphalt”
based on spectral characteristics, the land use could be any-
thing from a road to a playground. Many remote sensing clas-
sification systems mix land cover types with land use.

There exist several global land cover datasets, many of
which are based on spatially and temporally heterogeneous
map and atlas data. Since the early 1990s, global remotely
sensed land cover datasets derived from the low-resolution
NOAA-AVHRR sensor have been produced. The current gen-
eration of global land cover datasets includes the GLC2000, a
detailed dataset produced from 14 months of pre-processed
daily global data acquired by the Vegetation instrument
onboard SPOT 4. The project is a European Commission ini-
tiative in collaboration with a network of partners around the
world. GlobCover was an ESA initiative that began in 2005.
The aim of this project is to develop global land cover maps
using as input observations from the 300 m MERIS sensor
on board the ENVISAT satellite mission. ESA makes avail-
able land cover maps which cover 2 periods: December
2004–June 2006 and January–December 2009.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard NASA’s spacecraft Terra and Aqua pro-
duces several interesting suites of imagery with global cover-
age and high spatial and temporal resolution. Terra MODIS
and Aqua MODIS view the Earth’s entire surface every 1 to

Figure 5. Fit of non-agriculture’s GDP for selected countries with large agricultural sector. Source: World Development Indicators and Estimated by Authors.
Note: Natural log of real GDP in local currency. Real line represents official figures, crossed line is authors’ estimations.

328 WORLD DEVELOPMENT



2 days and observations are averaged over 8 or 16 days. The
MODIS instrument provides high radiometric sensitivity (12
bit) in 36 spectral bands ranging in wavelength from 0.4 to
14.4 lm. Two bands are imaged at a nominal resolution of
250 m, five bands at 500 m and the remaining 29 bands at
1 km. MODIS land products are received, distributed, and
archived at the Land Processes Distributed Active Archive
Center (LP DAAC), a component of NASAs Earth Observing
System (EOS) Data and Information System (EOSDIS).
MODIS land cover products are produced from supervised
classification, unlike GlobCover and GLC2000, which are
produced mainly from unsupervised classification. MDC12Q1
is the MODIS yearly land cover product and exists in two ver-
sions, an older version (V005, 2001–2007) and a more recent
version (V051, 2001–2010). Data are presented in tiles of
approximately "1200 # 1200 km ("10" # 10" at the Equator)
with 500 m nominal spatial resolution.

As we aim to use nighttime lights and land cover to estimate
growth, it goes without saying that we need a land cover data-
set with similar spatial and temporal resolution. We have
determined that, among the land cover datasets currently
available without a fee, MDC12Q1 suits our purpose the most.

MDC12Q1 includes five layers based on different classifica-
tion systems:

17-class International Geosphere-Biosphere Programme
classification
14-class University of Maryland classification
10-class system for MODIS LAI/FPAR algorithm
8-biome classification by Running
12-class plant functional type classification by Bonan

Data are produced on a calendar year basis and the inputs
to the classification algorithm are no fewer than 135 different
features including, for example, spectral and temporal
information from MODIS bands 1–7, Enhanced Vegetation
Index and Land Surface Temperatures. Approximately 1,860
sites around the world are used as training data for the classi-
fication algorithm. Sites are selected to ensure geographic and
ecological variability. They are manually delineated in Land-
sat imagery and are generally between 0.2 and 80 km2. Results
are quantitatively assessed based on a 10-fold cross validation.
As our aim is to capture the economic growth generated by the
agricultural sector, we have extracted the classes of most rele-
vance. They are IGBP class 10 (grasses/cereals), 12 (crop-
lands), and 14 (cropland/natural vegetation mosaic). The
overall classification accuracy of the selected classes is 72.5%
which can be considered as normal.

4. ESTIMATION AND RESULTS

Our basic estimation strategy follows that developed by
Henderson et al. (2012). Their framework can be shown as
Eqn. (1):

cjt ¼ ŵxjt þ cj þ dt þ ejt ð1Þ

where . . .cjt is the true GDP of country j at time t. xjt is the
level of observed nighttime light in the corresponding country
and at the corresponding time. cj, dt, and ejt denote country
effect, year effect, and error term, respectively. The assumption
for this model is then that, no matter the type of economic

Figure 6. Fit of agriculture’s GDP for selected countries with large agricultural sector. Source: World Development Indicators and Estimated by Authors.
Note: Natural log of real GDP in local currency. Real line represents official figures, crossed line is authors’ estimations.
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activities on the ground, their aggregated growth results in the
same percentage growth of nighttime light observed by satel-
lite plus country-invariant, time-invariant effects and an error
term. The basic regression analysis assumption requires that
the error term be a random variable with a mean of zero.
However, we have shown through gridded data of land cover
and nighttime lights that it is possible for agriculture’s value-
added to increase without emitting more observable nighttime
light into space. If this is the case, then the error term is actu-
ally dependent on the agricultural share as the higher the agri-
cultural share the higher the error term. Randomness of the
error term from independent variables is one of the important
assumptions of regression analysis. It is therefore desirable to
exclude activities that can grow without emitting more night-
time light. Table 3 shows the elasticity of nighttime lights on
GDP for groups of countries according to agricultural share.
Elasticity becomes negative for countries with an agricultural
share between 20% and 40%. The relationship becomes insig-
nificant for countries with an agricultural share equal to or
more than 50%. Negative elasticity is unnatural because richer
people can afford more not less nighttime lights. Given this
unstable relationship, we argue that nighttime light is not a
good predictor of growth of agricultural value-added.

It is noteworthy that agriculture is often not completely
independent from non-agriculture. Apart from being con-
sumed outright, agricultural products can also be inputs to
non-agricultural sectors. If most non-agricultural activities
emit nighttime light as they grow, agricultural growth

may somehow be captured on the ‘macro’ level. In fact,
Henderson et al. (2012) partly base justification of their
framework on this mechanism. This seems to work reasonably
at the country-level. However, limiting predictors to nighttime
lights poses two major drawbacks. First, they cannot account
for areas without observable nighttime light. Henderson et al.
(2012) show how to analyze growth in cross-border areas with-
out taking administrative borders into account. Obviously,
such a framework cannot quantify growth of regions, interna-
tional or domestic, without observed nighttime light. It can, at
best, generate the same growth rate from differences of time-
invariant effects among non-lit regions. Second, it would be
a loss of opportunity not to explore other readily available
remote sensing data. Nighttime light introduced remote sens-
ing into economics and it is to the benefit of everyone involved
to expand this in all possible directions.

(a) Extended estimation framework and results

This paper makes full use of the statistical framework and
estimation strategy proposed by Henderson et al. (2012).
However, we have revised the assumption that all economic
growth is captured by growth in observed nighttime light.
Our revised assumption is that nighttime lights observed from
space are the result of growth in only the non-agricultural
sector. We therefore divide the equation of Henderson et al.
(2012) into non-agricultural (Eqn. 2) and agricultural (Eqn. 3)
parts. Based on our discussion in previous sections, we

Figure 7. Fit of non-agriculture’s GDP for selected countries. Source: World Development Indicators and Estimated by Authors. Note: Natural log of real
GDP in local currency. Real line represents official figures, crossed line is authors’ estimations.
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introduce MODIS land cover product MCD12Q1. The biggest
difference between land cover and nighttime light data is that
there are many different classifications of the former.
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(b) Regression results

We first show the estimated results of Eqn. (2) in Table 4.
Table 4 is mostly a replication of Henderson et al. (2012),
but shows non-agriculture growth instead of overall GDP
growth. The elasticity on overall growth of GDP with respect
to nighttime light is 0.27, close to the value of 0.3 found by
Henderson et al. (2012). We take this as evidence that the
growth of nighttime light, observed from space, is largely the
result of expansion of non-agricultural growth on the ground.

Next is Eqn. (3). Land cover data used in our analysis are
only available from 2001, so estimation of growth from agri-
culture is done for a period approximately half the length of
that used for non-agriculture growth. Table 5 shows several
combinations of land cover as predictors of agriculture
growth. First, nighttime light is rejected as a significant estima-

tor of value-added in agriculture and forestry. This holds for
all specifications in Table 5. Second, forest area has
negative impacts on agriculture and forestry. In other words,
agriculture and forestry value-added can grow by reducing
forest area. Cutting down trees reduces forest area, while their
commercial value increases forestry’s value-added. Forest area
reduction through expansion of agricultural land also
increases agricultural output. The coefficient of forestry is
about !0.04 and is stable across all specifications.

The category cropland (L12) alone does not explain agricul-
ture’s value-added significantly. We argue that two limitations
of categorical remote sensing data may be responsible for this.
First, in categorical remote sensing, a certain area, in this case
one square kilometer, needs to be categorized to one pre-
defined category. However, many medium- and small-scale
farmers have cropland hardly larger than one square kilome-
ter. So, categorical errors inevitably exist. Smaller agricultural
fields in developing countries may be mistaken for grassland
or the like. Second is another categorical error but one that
arises from a different source. Remote sensing at a global scale
can only be achieved through automatic or semi-automatic
categorization using a limited sample obtained from ground-
based surveys. Areas are categorized automatically based on
their spectral properties (color, reflectance etc.) which are used
to place them into categories. It is not difficult to imagine that
such sample data are much less readily available for develop-
ing countries. We argue that one way to overcome the effects
of these categorical errors is to group similar categories
together. This works for forest and also for agricultural land.
When cropland (L12) is grouped with cropland/natural

Figure 8. Fit of agriculture’s GDP for selected countries. Source: World Development Indicators and Estimated by Authors. Note: Natural log of real GDP in
local currency. Real line represents official figures, crossed line is authors’ estimations.
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Figure 10. Average growth of agriculture and non-agriculture on district level Indochinese Peninsula (Cambodia, Lao PDR, Myanmar, Vietnam, Thailand).
Source: Estimated by Authors.

Figure 9. Average growth of agriculture and non-agriculture on district level in Indochinese Peninsula (Cambodia, Lao PDR, Myanmar, Vietnam, Thailand).
Source: Estimated by Authors.
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vegetation mosaic (L14), they show positive impacts on value-
added in agriculture and forestry. In the last specification, we
determine group L10, L12 and L14 to generate agricultural
land.

(c) Estimating growth of agriculture and non-agriculture on
national levels

In this section we estimate growth of agriculture and non-
agriculture in a selection of countries to evaluate the perfor-
mance of our models. Figures 5–8 show these growth figures
in countries with a large agricultural share and in selected
industrialized and developing countries. The fit of non-agricul-
ture and agriculture for countries with a large agricultural
share is in Figures 5 and 6. The fit for non-agriculture is suf-
ficiently good for most of the selected countries. While large
fluctuations of agriculture value-added are not captured well,
land cover data are able to predict the agriculture’s growth
trend well (Figure 6). Predictions of non-agriculture are even
better for selected industrialized countries (Figure 7). On the
contrary, the fit for agriculture is relatively poorer for higher
income countries (Figure 8) which can be mentioned as a
weakness of this framework. While expanding agricultural
land is generally required in order to increase production in
developing countries, the same is not true in developed coun-
tries. There, it is often possible to change production levels
without affecting the amount of agricultural land. It is there-
fore more difficult for land cover data to predict agriculture’s
output for developed countries. In other words, unlike night-
time light data, land cover data are one-dimensional categor-
ical data. Nighttime light data provide information in two
dimensions. Area lit increases with new nighttime emissions
in previously dark places and light intensity increases when
additional light sources emerge on top of existing sources.

(d) Estimating growth of agriculture and non-agriculture on
sub-national levels

Estimation of growth on the national level can be done
through many existing frameworks. The advantage of our
framework is the ability to estimate growth figures in regions
of virtually any shape and size. We achieve this by, as dis-
cussed, including land cover data, which are much more ubiq-
uitous than nighttime light data. This allows us to estimate
growth within areas where nighttime lights are not observable
from outer space. Figure 9 shows growth figures by administra-
tive level 2 (equivalent with district level) in the Indochinese
Peninsula. Among 3,538 districts in five countries, namely
Cambodia, Lao PDR, Myanmar, Vietnam and Thailand,
about 92% exhibit positive average growth in agriculture dur-
ing 2002–09, while about 86% do so in non-agriculture during
1992–2009. A larger portion of level 2 administrative areas
show negative average growth in non-agriculture because of
a sharp drop off in 2008 and 2009. The geographical distribu-
tion of this is shown in Figure 10. High agricultural growth
concentrates in Northern Lao PDR, Cambodia, and North-
eastern Thailand. There is additionally some geographically
scattered growth in Western and Northern Vietnam. The rela-
tively high growth in the agricultural sector on district levels in
Northern Lao PDR follows observations from the ground
reported by Andersson, Engvall, and Kokko (2010). The rapid
expansion is reported to be related to Chinese investments pro-
viding capacity to clear and prepare land previously used as
forest land to be agricultural land. In contrast, non-agriculture
has grown faster in Vietnam and Western Cambodia.

5. CONCLUSION

Monitoring of economic activities should provide longitu-
dinal information in a standardized and regular manner at
different geographical scales. Planning and directions of
public investment are dependent on accurate statistical mea-
surements. In many developing countries, survey data on
economic activity are released at an interval of 5–10 years.
Based on the information provided, stakeholders are
enabled to make decisions and identify areas with large var-
iation in production and productivity and target these areas
through directed investments. Estimates should therefore be
provided as early as possible during the economic cycle and
updated periodically over time.

This article presents a model for estimating agricultural and
non-agricultural economic growth on national and sub-
national levels using satellite data. The application of remote
sensing data in economic analysis is in the very early stages
and has largely been limited to observations of nighttime
light. We have contributed to the literature through better
accounting for agriculture by means of land cover observa-
tions. The inclusion of land cover data significantly improves
our model’s estimates for agriculturally dominated regions
on a global scale. Yet we acknowledge the limitations of cate-
gorical data on an annual time scale. The classes provided in
the IGBP-classification protocol do not cover the geographic
and ecological variability in global land cover, the temporal-
spatial separation of classes is ambiguous and this is
compounded by the inclusion of mixture classes (Friedl
et al., 2010). Furthermore, for more than forty years the
design of the OLS has not changed significantly and OLS data
have relatively coarse spatial resolution, limited dynamic
range, and lack in-flight calibration (Elvidge, Baugh,
Zhizhin, & Hsu, 2013).

Despite the limitations mentioned above, this article pro-
vides advancement on how to monitor economic development
from space. First, our study provides a global model with a
unique spatial and temporal perspective of change in
economic activities. Second, it provides a truly geographical
perspective with high spatial resolution of observations
together with global coverage that permits analysis at a
multitude of scales. The model output can be aggregated to
arbitrary geographical spatial units such as nations but, more
importantly, it can also be used for studying functional
regions that challenge administrative borders as shown in
the spatial analysis of agricultural and non-agricultural
growth in the Indochinese Peninsula.

Our ongoing work includes tests with well-known remo-
tely sensed vegetation indices with improved spatial
(250 m) and temporal (monthly) resolution. Here, the prob-
lem becomes how to separate human-induced and economi-
cally relevant changes from natural and seasonal fluctuations
in vegetation. In addition, in 2011 NASA and NOAA
launched the Suomi National Polar Partnership (SNPP)
satellite carrying the first Visible Infrared Imaging Radiom-
eter Suite (VIIRS) instrument. The VIIRS collects low light
imaging data and has several improvements over the OLS’
capabilities which will be of great interest for future research
in this vein.

NOTE

1. http://web.ornl.gov/sci/landscan/.
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